Etätodennus lisää luottamusta kriittisiin infrastruktuureihin

Kun keräät esimerkiksi lämpötilamittauksia esineiden internetistä (engl. Internet of Things, IoT), haluat olla varma siitä että kyseiset mittaukset ovat tuoreita. Lisäksi niiden tulee olla lähtöisin kalibroiduista ja peukaloimattomista sensoreista. Sensorien eheyden varmistaminen muodostuu entistä tärkeämmäksi IoT-laitteita vastaan suunnattujen hyökkäysten yleistyessä. IoT-laitteita myös hyödynnetään bottiverkkojen solmuina, kuten kävi Mirai-tapauksessa. Etätodennus (engl. remote attestation) on mekanismi systeemin sisäisen tilan mittaamiseen. Se raportoi tuoreen tilatiedon etävarmentajalle eheyden todentamiseksi.

Koko yhteiskunta on tulossa entistä riippuvaisemmaksi erilaisista hajautetuista järjestelmistä. Etätodennusta voidaan soveltaa kriittisten infrastruktuurien eheyden suojaamiseksi. Mitä kriittisempi järjestelmä, sitä tärkeämpää etätodennus on. Esimerkiksi energiantuotanto ja –jakelu, maksujärjestelmät sekä sotilaalliset verkostot ovat erittäin kriittisiä ja asianmukaisten todennusjärjestelmien tulisi olla kunnossa. Tällaisten hajautettujen järjestelmien laitteet voivat sijaita laajalla maantieteellisellä alueella, jolloin niitä tulee suojata hyökkäyksiltä sekä verkosta, että fyysisestä maailmasta. Tämä ei aina ole helppoa.

Sovelluksia ja teknologioita

Etätodennusta käytetään tyypillisesti lisätarkistuksena ennen pääsyä tarjottavaan palveluun. Esimerkiksi yritykset voivat pakottaa kannettavan tietokoneen vastaanottamaan ohjelmistopäivityksiä karanteeniverkossa ennen päästämistä ensisijaiseen langattomaan verkkoonsa. Pilvipalveluissa voi hyödyntää etätodennusta todistamaan, että virtuaalikone on asennettu asianmukaisesti ja luottamuksellisia laskentatehtäviä ajetaan asiaan tarkoitetulla erityisalueella (engl. enclave). Lisäksi etätodennusta voi käyttää kuten virus­skannausta verkon laitteiden eheyden tarkastamiseen. Kaikki nämä rutiinit luovat turvallisempia toimintaympäristöjä.

Tyypillisiä todennusmekanismeja, -protokollia ja -arkkitehtuureja ovat esimerkiksi:

  • Eristetyt ajonaikaiset ympäristöt mittausten turvaamiseksi ja allekirjoitetun eheysraportin tarjoamiseksi, kuten Trusted Platform Module (TPM), Intel Software Guard Extensions (SGX) ja ARM TrustZone
  • Mittausmekanismit – käynnistysvaihe ja käyttäjätila, kuten Integrity Measurement Architecture (IMA)
  • Etätodennusprotokolla, kuten Open Cloud Integrity Technology (OpenCIT)

Ongelmia ja rajoituksia

Kuten mikään paradigma, etätodennuskaan ei ole täydellinen ratkaisu. Sillä on omat haasteensa kuten ajantasaiset valkoiset listat. Listojen ylläpitäminen on mahdollista sulautetuissa järjestelmissä kuten IoT-laitteissa, jotka on suunniteltu toteuttamaan vain rajallisen määrän tehtäviä. Täysveristen tietokoneiden tapauksessa puolestaan valkoisten listojen ylläpitäminen tulee erittäin haastavaksi, koska asennettuja ohjelmistoja ja ohjelmistopäivityksiä on paljon.

Toinen haittapuoli etätodennuksessa on keskittyminen pääasiassa suoritettaviin tiedostoihin niiden latausvaiheessa. Etätodennus ei auta enää hyökkäyksissä, jotka hyödyntävät ajonaikaisia haavoittuvuuksia kuten puskurin ylivuotovirheitä. Onneksi hyökkääjät kuitenkin jättävät haittaohjelmia asennellessaan jälkiä ja etätodennusmenetelmillä niitä voidaan myöhemmin seurata.

VTT_Cybersecurity

Kuva 1. Etätodennusprotokolla välittää eheysvarmistetut mittaustiedot verifioijalle.

Lopuksi

Etätodennusta voidaan hyödyntää verkon laitteiden eheyden varmistamiseksi. Sitä tulisi soveltaa verkoissa, jotka tarvitsevat normaalia parempaa tietoturvaa, erityisesti kriittisissä infrastruktuureissa.

Lataa ilmainen raporttimme kyberturvallisuudesta ja opi turvaamaan oma organisaatiosi ja varautumaan tietoturvaongelmia vastaan.

MarkkuKylanpaa

 

Markku Kylänpää
Senior Scientist, VTT
markku.kylanpaa(a)vtt.fi

 

Lisätietoja

Lee-Thorp A., “Attestation in Trusted Computing: Challenges and Potential Solutions”, Royal Holloway Series, http://cdn.ttgtmedia.com/searchSecurityUK/downloads/RHUL_Thorp_­v2­.­pdf .

Kylänpää M., Rantala A., “Remote Attestation for Embedded Systems”, In: Security of Industrial Control Systems and Cyber Physical Systems. CyberICS

Special competence in electronics is Finland’s ace in the hole

Finland has several things to be proud of. In addition to the clean nature, high-quality education, health care and many other oft-mentioned things, we should bring up our world-class research. The ecosystem formed by VTT Technical Research Centre of Finland Ltd, universities, Tekes – the Finnish Funding Agency for Innovation, the Academy of Finland and companies produces innovations for different industries.

Finland possesses top-grade special competencies, for example in the fields of sensor and measurement technology, microelectronics and their integration, printed electronics and health technology. By grasping the new opportunities of electronics, we can develop IoT products, digitalise traditional industries and create new business and jobs in Finland.

The Internet of Things will explode the demand for sensors and electronics research

Over the last couple of years, the industrial Internet has been on the rise in Finnish and global industry. The Internet of Things (IoT) will connect increasingly varied devices to the Internet and bring automation to a whole new level. The first autonomous cars and ships, as well as care robots, are currently being introduced. In order to become a reality, a majority of the visions requires a significant number of sensors, and electronics integrated into the devices.

The need for electronics-based research and innovation is emphasised, and that is something we Finns excel at. Finland does not compete in the mass production of semiconductor electronics, or in consumer electronics, but once we start talking about sensors requiring special know-how, and their materials, manufacturing processes and applications, we are a world leader.

Analysis of foodstuffs at one hundredth of the price

VTT is strongly involved in applied research in the electronics industry. We have developed, for example, a Fabry-Perot interferometer that can be used to measure, e.g. air pollutants, foodstuffs or, let us say, the condition of the atmosphere from the space in a wholly unique way. Since then, Spectral Engines Oy has commercialised microspectrometer technology based on the Fabry-Perot interferometer that allows the implementation of a spectrometer suitable for analytics at one tenth to one hundredth of the price.

Spectral Engines recently won the main prize, EUR 800,000, in the Food Scanner competition arranged by the EU. The awarded concept combines an infrared spectrum identification module, advanced algorithms, a cloud service and a materials library that allow the user to measure, for example, the main components and total energy of foodstuffs.

Printed electronics are on the rise

In the early 2000s, VTT began research in printed electronics and also made a significant investment in pilot production lines. The risk paid off and today, when it is time to apply printed electronics and build new products and business on the foundation laid down by the research, we are a global frontrunner. The electronics meld into the surfaces of the products and follow their three-dimensional shapes. Organic solar cells or interior lighting can be a part of building architecture or the interior design of cars.

We recently introduced a display element laminated into the windscreen of a bus with Pilkington. Printed electronics are deeply integrated into traditional products, giving them added value. We must not squander this opportunity and headway and allow other countries to reap the benefits!

Rapid diagnoses on the spot

VTT possesses the ability to combine know-how in medical science, chemistry, printing technology and measurement technology into new and competitive products. One interesting application area for printed electronics can be found in the health care sector. The so-called ‘point-of-care diagnostics’ means making diagnoses on the spot instead of in laboratory conditions as in the traditional method. Disposable rapid diagnoses utilising printed electronics save both time and money.

The products are cheap and look simple, but when you start to consider how a sample of one thousandth of a milligram is managed, and how a specific illness or, for example, the blood alcohol content is reliably indicated, a clear role for research and competence becomes evident. For example: Promilless is a consumer product that costs a couple of euros and allows an uncertain driver to test their driving condition with a saliva test. The test is simple for the user, but it is based on years of research.

Need for an electronics research programme

There is a significant number of growth-oriented start-ups utilising electronics, photonics and printed electronics technologies in Finland, boosted by the Printocent company cluster, for example. They create export products, profitable business and jobs – which Finland needs.

Although innovating in electronics and measurement technology continues apace, there exists a need for a growth-oriented research programme that would bring together the resources of entire Finland. Public funding of electronics research has decreased radically, and the latest Tekes programme in this sector was ELMO that ended in 2005.

The goal of the programme jointly implemented by the actors in the sector should be the creation of new products and production in Finland. Manufacturing capability is fundamentally connected to the industrialisation of printed electronics, for example. Let us digitalise Finland and the traditional industries with electronics!

Jussi Paakkari VTT

Jussi Paakkari
Vice President, Sensing and integration

IoT sensors – why your R&D partner could also be your ideal manufacturing partner

‘A trillion sensors, a million applications and a fragmented market ’

In a hyper-connected IoT world it is not hard to imagine a trillion sensors collecting rich amounts of data that will provide new insights that will shape the way we live in our intelligent homes or commute in our self-driving cars. There is certainly no shortage of market research predicting healthy growth in the market for such sensors. This has led to much discussion about how to economically manufacture large volumes of sensors and the potential need for new manufacturing technologies, such as roll-to-roll printing, to meet these needs.

While there will undoubtedly be a need for high volumes in some applications, a closer look at the market predictions tells a different story – one of deep fragmentation where there is tremendous diversity in both markets and applications within those markets. Essentially the opportunities for electronic sensors comprises of thousands of niches where annual volumes can range from hundreds to thousands of sensors – with very few applications with requirements for millions or billions of sensors of the exact same type.

Why does this matter?

What this means is that the demand for new sensors can be mostly satisfied by existing semiconductor processing & packaging techniques and in many application cases, the volume of wafers required will actually be quite low. If we take a typical 150mm wafer with a sensing element that is 4mm2, a single batch of 25 wafers can produce close to 90,000 sensors (assuming an 80% yield) – enough to satisfy the annual needs of many companies. Such low wafer volumes are not interesting to most contract manufacturers and the actual production cost is dwarfed by cost of R&D to develop the sensor and to potentially transfer the technology to a new facility.

Wafers

Sensor development versus manufacturing costs

The process of developing new MEMS, micro or nano-electronic sensor elements can be an expensive business. Depending on the complexity of the sensor and the maturity of the technology platform, development costs can run into millions of euros and take upwards of 2 years. While some companies do all of the work in-house, many others partner with R&D organizations, leveraging public funding and national infrastructure to develop the technology platform to a level of maturity where realization of multiple individual products is viable.

To use an example from VTT, a hyperspectral MEMS sensor manufacturing platform may have cost €5M to develop over 3 years yet a single batch of 25 wafers for a specific application might cost between €50 & €100k to manufacture and could yield upwards of 50,000 sensors. If these sensors are subsequently integrated into an instrument that sells for €1,000 per unit, then a €50M business is enabled and sustained from a very low wafer manufacturing volume.

Traditional cost model

Historically, the prevailing logic has been to take the developed process and then transfer to a production facility but does this always make sense? Manufacturing processes for MEMS sensors are notoriously specific to the process flows, recipes and equipment on which they were developed and undertaking a technology transfer project to a new facility can be expensive and time consuming. If the subsequent volumes are low, it does not make economic sense to redevelop processes for a new facility as these costs may well exceed the ongoing low-volume manufacturing costs.

Many sensors but few wafers – Manufacture in an R&D Fab

When ongoing production needs are relatively low (<1000 wafers per year) it’s worth considering your R&D partner as a primary or secondary production source for sensor elements. In fact it offers you a direct path to production with some major benefits. Being able to save on conducting an expensive and potentially risky technology transfer project will likely offset any component price benefit gained by moving to a pure production fab.

New cost model

In an increasingly fast moving world, it is also possible to accelerate time-to-market by many months which can be especially beneficial to SMEs where cash flow is critical and lost time is lost revenue. It’s also worth noting that while the sensor element is the key enabler of many systems, the product value tends to be created at a system / service model level, with the actual sensor being a relatively small part of the overall system cost. Why undertake a risky tech transfer to reduce the cost of a €10 sensor by €3 when the system as a whole sells for €300 or even €3000?

Key question

From a business strategy perspective, the important question to ask is “Does the future marginal cost benefit of manufacturing in a production facility, exceed the combined value of the lost time, risk and cost of a tech transfer project?” Any technology transfer project should have a sound financial justification measured over the expected production timescale and total system costs.

A seamless route from R&D to volume manufacturing

There are a number of RTOs such as VTT that will offer manufacturing services as it’s a good way to better utilize expensive fabrication facilities and ensure financial sustainability and future investments. It can also be useful to have the researchers who developed the product, be readily available to troubleshoot if production issues occur. That said, there are pitfalls to be avoided (particularly operational and quality procedures that are geared purely towards R&D) and you should ensure that your partner has an organization that is managing the fab operations in a professional way to ensure both process capability and repeatability.

By providing the necessary operational competence and quality certifications your R&D partner could be your credible production source – offering you a ‘seamless route from R&D to volume manufacturing’ in sensor production.

Howard Rupprecht VTT

Howard Rupprecht
Vice President, Micronova manufacturing services