Extreme weather phenomena and climate change challenge our transport system – part 2

Principal Scientist Pekka Leviäkangas and Senior Scientist Riitta Molarius are presenting the OECD publication’s key recommendations in a series of blog articles this spring. In this, the second part, they sum up preparedness plans for ensuring a functioning transport system, chart the vulnerability of infrastructure assets and emphasise the importance of systemic approaches. Read the first part here.

At the turn of the year, the Organisation for Economic Co-operation and Development’s (OECD) International Transport Forum (ITF) published a research report on the challenges posed by extreme weather phenomena and climate change to the transport system, particularly the transport infrastructure. The report Adapting Transport to Climate Change and Extreme Weather: Implications for Infrastructure Owners and Network Managers lists recommendations for OECD Member Countries on minimising adverse effects.

VTT is one of the report’s main authors. In this second blog post, we discuss the recommendations further, focussing on recommendations 4–6.

4: Account for the temporary unavailability of transport systems in service continuity plans

Extreme weather events can disrupt connections, interrupt traffic and adversely affect operations in various ways – even if weather phenomena are not at their most extreme. In such cases, an organisation’s preparedness to respond is the key to managing the situation and keeping damage to a minimum.

Various tools are available to public authorities and companies, including in the form of standards such as the ISO 22301 Societal security – Business continuity management systems standard. This standard is primarily designed for business performance management of companies, but it in fact works well also for public organisations, once the word ‘business’ is put in parentheses. The standard will help organisations to protect themselves from disruptive events by means such as reducing their likelihood, preparing for them, or enabling rapid recovery. The standard focuses on information exchange, the allocation of duties and cooperation between parties, by defining criteria for effective contingency management, planning and operations. Major operational improvements can be made and capacity for managing exceptional situations built by going through the checklists in the standard. The standard, which is general in nature, helps to prepare for various disruptions other than just extreme weather events.

Information exchange, planning and operational systems play a key role in organisational contingency planning. All of these, in turn, are partly relying on technological tools. A wide range of such tools is available. The challenge lies in how to incorporate technology in organisational and institutional processes, to prevent them from being paper tigers that lack concrete, practical tools. A strong services continuity plan will support an organisation in managing disruptive scenarios by providing solutions and models for re-routing transportation or asset management recovery plans, for example.

Euroopan ilmastoalueiden luokittelu sään ääri-ilmiöiden mukaan

Figure 1. Classification of European climate regions based on adverse and extreme phenomena and projected trends in the frequency of adverse and extreme phenomena by the 2050s (Leviäkangas & Saarikivi, 2012, EWENT D6).

5: Assess the vulnerability of transport infrastructure assets

Vulnerability is challenging to define whether one tries to do it in theoretical or practical terms. However, the basic idea is to identify the probability that threatening events will occur, their domino and distributional effects, and ‘weak links’, i.e. the structures and locations that are most exposed, vulnerable and most susceptible to extreme weather-related stress. Merely summing up these factors provides a preliminary idea of vulnerability.

The EWENT project, which focused on extreme weather impacts, defined vulnerability as follows (Molarius et al. 2014):

Weather equation

The above equation is useful because it defines the components of vulnerability, which in the best case facilitates the concept’s operationalisation into measurable set of variables.

For instance, in the aforementioned EWENT project a risk index for main routes in Finland was calculated using the above formula as a function of vulnerability and risk (Figure 2).

Suomen pääliikenneväylien haavoittuvuusindeksi sään ääri-ilmiöitä kohtaan

Figure 2. The vulnerability index for extreme weather phenomena for main transport routes in Finland. The higher the numerical value, the more vulnerable the transport route. The first figure refers to vulnerability to accidents, the second describes infrastructure vulnerability and the third delays in transport. The routes included are roads, railways (rail), sea passages (short sea), air transport (aviation) and inland water transport (IWT). Blue = passenger index, red = freight index.

The transport system can be further divided into subsystems (modes of transport, their infrastructures, rolling stock, organisations, services), making the complex system block more manageable. It is simpler and more understandable to assess the vulnerability and risks of these elements than to process the system as a whole. In a way, vulnerability can be considered as the inverse value of resilience, the ability to resist and recover.

Unless we invest in maintaining our transport system, our ageing infrastructure will accumulate an increasing investment deficit and become more vulnerable, whilst extreme weather phenomena become more common. In addition to infrastructure’s condition itself, factors influencing the system’s vulnerability include traffic volumes (the more traffic, the more negative aggregate effects), and general economic capacity (the more economic resources, the better you are able to cope with adverse impacts).

6: Focus on transport system resilience, not just infrastructure

The construction and maintenance of a robust and invulnerable infrastructure pays dividends. Other elements of a resilient system include flexibility, responsiveness, adaptation and fast recovery. Less attention has perhaps been paid to these elements than they deserve. In thick snow, do snowploughs start moving fast enough and is there enough fleet and equipment? When services of this type are outsourced, this may be a purely contractual issue, which means that e.g. public procurements can play a role in resilience. Or, has sufficient attention been paid to proactive maintenance in infrastructure maintenance contracts, or has the lowest bidder been selected? As climate warming proceeds and extreme weather becomes more frequent, have we renewed our maintenance fleet and service contracts accordingly, or have we simply begun to wait for snowless winters and iceless routes?

Cities play a key role  

Most transport needs arise in cities. Both the population (in 2015, almost 86% of the Finnish population lived in cities) and high-value production and services are concentrated in cities. Urban transport system resilience has most impact on the everyday lives of citizens.

When the tram fails, take a bus, or vice versa. The construction, maintenance and servicing of bicycle routes not only serves to keep people fit or supports a nice way of moving around, it plays a more important role in ensuring the functionality of the entire transport system. Access to cities for residents of sparsely populated areas can be supported by constructing connective infrastructure (i.e. parking areas, connecting stations) at public transport nodes on the outer reaches of core areas. As a rule of thumb, diversity is a strength in systemic resilience, which is why it should always be on the checklist of urban planners. On the other hand, there are drawbacks to diversity, because to be market attractive, public transport should be able to serve its customers at the time of need. A public transport network, that is sufficiently dense and high-capacity increases, in turn, the risk of buses or trams running empty, thus contributing to higher emissions. Enhancing flexibility may require a re-evaluation of the public transport system, shifting the emphasis from economies of scale (which works sometimes, but not always) to a more agile and flexible system. How about small, demand-responsive electric buses?

In the next blog post, we will discuss the final three recommendations of the OECD’s publication and consider the strengths and weaknesses of the Finnish transport system.

Pekka Leviäkangas VTT

Pekka Leviäkangas, Principal Scientist

Riitta Molarius VTT

Riitta Molarius, Senior Scientist

Read more:

ITF (2016), Adapting Transport to Climate Change and Extreme Weather: Implications for Infrastructure Owners and Network Managers, ITF Research Reports, OECD Publishing, Paris. http://dx.doi.org/10.1787/9789282108079-en

The report can be downloaded at: http://www.oecd-ilibrary.org/transport/adapting-transport-to-climate-change-and-extreme-weather_9789282108079-en;jsessionid=5o0iqml8ohiq9.x-oecd-live-03

The EWENT project: http://ewent.vtt.fi/index.htm

Leviäkangas P & Saarikivi P 2012: D6: European Extreme Weather Risk Management – Needs, Opportunitites, Costs and Recommendations. http://ewent.vtt.fi/Deliverables/D6/Ewent_D6_SummaryReport_V07.pdf

VTT Technology 43: Weather hazards and vulnerabilities for the European transport system – a risk panorama. http://www.vtt.fi/inf/pdf/technology/2012/T43.pdf

Äärisääilmiöt ja ilmastonmuutos haastavat liikennejärjestelmämme – osa 2

Johtava tutkija Pekka Leviäkangas ja erikoistutkija Riitta Molarius esittelevät OECD:n varautumissuositukset kevään aikana blogissamme. Tässä toisessa osassa he summaavat liikennejärjestelmän toimivuuden valmiussuunnitelmia, kartoittavat infrastruktuuriomaisuuden haavoittuvuutta ja avaavat kaupunkien roolia ja resilienssiä. Lue ensimmäinen osa täältä.

Taloudellisen yhteistyöjärjestö OECD International Transport Forum (ITF) julkaisi vuodenvaihteessa tutkimusraportin äärisääilmiöiden ja ilmastonmuutoksen aiheuttamista haasteista liikennejärjestelmälle, erityisesti liikenteen infrastruktuurille. Raportti Adapting Transport to Climate Change and Extreme Weather: Implications for Infrastructure Owners and Network Managers listaa suosituksia OECD-maille, jotta haitallisilta vaikutuksilta vältyttäisiin.

VTT on eräs raportin pääkirjoittajista. Tässä toisessa blogikirjoituksessa käymme edelleen läpi suosituksia. Nyt ovat vuorossa suositukset nro 4–6.

4: Huomioi valmiussuunnitelmissa, että liikennejärjestelmä ei ehkä ole kaikilta osiltaan toimintakunnossa

Äärisäät saattavat katkaista yhteyksiä, keskeyttää liikennöintiä ja haitata toimintoja monin tavoin, vaikka ilmiöt eivät sinänsä olisikaan voimakkuudeltaan asteikon ääripäästä. Tällöin organisaation oma joustavuus ja nopea reagointikyky ovat avainasemassa, jotta tilanne saadaan hoidettua mahdollisimman pienin vahingoin. Näissä tilanteissa etukäteissuunnittelun merkitys korostuu.

Työkaluja viranomaisten ja yritysten käyttöön on tehty jopa standardeiksi asti, esimerkiksi ISO 22301 Societal security – Business continuity management systems -standardin tavoitteena on parantaa yritysten toiminnanohjausta siten, että yritys voi suojautua häiriötä aiheuttavilta tapahtumilta esimerkiksi pienentämällä niiden todennäköisyyttä, varautumalla niihin tai toteuttamalla toimenpiteitä, joilla häiriöstä toivutaan nopeasti. Standardi keskittyy tiedonvaihtoon, eri osapuolten työnjakoon ja yhteistyöhön asettamalla kriteereitä tehokkaalle valmiusjohtamiselle, suunnittelulle ja operatiiviselle toiminnalle. Käymällä läpi standardin tarkistuslistoja voi toimintaa parantaa paljon ja luoda valmiuksia poikkeustilanteiden hoitoon. Standardi on yleinen, ja auttaa varautumaan muihinkin häiriöihin kuin äärisäätilanteisiin.

Tiedonvaihto-, suunnittelu- ja toimintajärjestelmät ovat organisaatioiden valmiussuunnittelun keskiössä. Kaikilla näillä on puolestaan yhteys teknologian tarjoamiin työkaluihin, joita on runsaasti. Haasteena on enemmänkin ujuttaa teknologia sisään organisatorisiin ja institutionaalisiin prosesseihin, jotta ne eivät jäisi vain paperitiikereiksi ilman konkreettisia, käytännönläheisiä työkaluja. Vahva palveluiden jatkuvuussuunnitelma tukee organisaatiota häiriöskenaarioiden hallitsemisessa tarjoten ratkaisuja ja malleja esimerkiksi kuljetusten uudelleen reititykseen tai palautumissuunnitelmia omaisuuden hallintaan.

Euroopan ilmastoalueiden luokittelu sään ääri-ilmiöiden mukaan

Kuva 1. Euroopan ilmastoalueiden luokittelu sään ääri-ilmiöiden esiintymisen mukaan ja ääri-ilmiöiden esiintymisen muutostrendi vuoteen 2050
(Leviäkangas & Saarikivi, 2012, EWENT D6).

5: Kartoita liikenneinfrastruktuuriomaisuuden haavoittuvuus

Haavoittuvuuden (vulnerability) määrittäminen on jo teoreettisesti haasteellista ja niin myös käytännössä. Perusajatus on kuitenkin tunnistaa uhkaavien ilmiöiden esiintymistodennäköisyys, niiden domino- ja jakaumavaikutukset, sekä ’heikot lenkit’, eli ne rakenteet ja paikat, jotka ovat eniten alttiita ja heikoimmin äärisäärasituksia kestäviä. Näiden tekijöiden summeeraus antaa jo ensimmäisen kuvan haavoittuvuudesta.

Sään ääri-ilmiöiden vaikutuksia käsittelevässä EWENT-hankkeessa haavoittuvuus on määritelty seuraavasti (Molarius et al. 2014):

kaava

Yllä esitetty yhtälö on käyttökelpoinen, sillä se antaa haavoittuvuudelle selkeät komponentit, jolloin parhaassa tapauksessa käsite voidaan operationalisoida mitattavaksi suureeksi.

Esimerkiksi Suomen pääväylien riski-indeksi on laskettu edellisen kaavan avulla edellä mainitussa EWENT-hankkeessa haavoittuvuuden ja uhan funktiona (kuva 2).

Suomen pääliikenneväylien haavoittuvuusindeksi sään ääri-ilmiöitä kohtaan

Kuva 2. Suomen pääliikenneväylien haavoittuvuusindeksi sään ääri-ilmiöitä kohtaan. Mitä suurempi lukuarvo, sitä haavoittuvampi liikenneväylä on. Ensimmäinen kuvio tarkoittaa haavoittuvuutta onnettomuuksille, toinen infrastruktuurin haavoittuvuutta ja kolmas kuljetusten myöhästymistä. Käsitellyt väylät ovat tiet (road), rautatiet (rail), meriväylät (short sea), lentoliikenne (aviation) ja sisämaan vesiliikenne (IWT).
Sininen väri = matkustajaindeksi, punainen väri = rahti-indeksi.

Liikennejärjestelmä voidaan edelleen purkaa osajärjestelmiksi (liikennemuodot, niiden infrat, kalustot, organisaatiot, palvelut), jolloin massiivinen kokonaisuus alkaa muodostua hallittaviksi palasiksi. Näiden osien haavoittuvuuden ja riskin arviointi on ymmärrettävämpää ja yksinkertaisempaa kuin järjestelmän käsittely kokonaisena. Haavoittuvuutta voidaan eräällä tavalla pitää resilienssin, vastustus- ja toipumiskyvyn, käänteisarvona.

Ikääntyvä ja velkaantuva inframme muuttuu entistä haavoittuvammaksi samalla kun äärisääilmiöt yleistyvät, mikäli korjausinvestointeja ei tehdä. Haavoittuvuuteen vaikuttavat infran kunnon lisäksi liikennemäärät sitä suurentavasti ja yhteiskunnan vauraus sitä pienentävästi, jos resursseja laitetaan infran kunnostukseen. Haavoittuvuus on ikävä juttu, mutta se ei parane hyssyttelemällä.

6: Huomioi systeeminen resilienssi, älä pelkästään infrastruktuuria

Kestävän ja haavoittumattoman infrastruktuurin rakentaminen ja ylläpito on tarpeen, ja se on kannattavaa. Se on kuitenkin osin defensiivinen ajattelumalli. Joustavuus, reagointi, sopeutuminen ja nopea palautumiskyky ovat niin ikään resilienssin järjestelmän elementtejä. Näihin on kiinnitetty vähemmän huomiota kuin ehkä pitäisi. Kun lunta pukkaa urakalla, niin ovatko auraajat liikkeellä tarpeeksi nopeasti ja tarpeeksi runsaslukuisella kalustolla? Tämä saattaa olla puhtaasti sopimuksellinen kysymys, joten resilienssiin voidaan vaikuttaa esimerkiksi julkisilla hankinnoilla. Tai onko ennakoiva kunnossapito huomioitu riittävästi infrastruktuurin hoitosopimuksissa, vaiko valittu halvin tarjoaja? Ilmaston lämmetessä, onko kunnossapitokalustoa uusittu oikeassa aikataulussa, vai jääty odottamaan lumettomia talvia tai jäättömiä väyliä? Esimerkkejä löytyy runsaasti.

Liikennejärjestelmän toimivuuden kannalta on tärkeää ylläpitää aiemmin mainittuja jatkuvuudenhallintasuunnitelmia, jotka voivat mahdollistaa myös järjestelmän turvallisen vikaantumisen tai häiriötilanteen.

Kaupunkien rooli on tärkeä  

Pääosa liikkumisesta tapahtuu kaupungeissa. Niihin ovat keskittyneet sekä väestö (vuonna 2015 kaupungeissa tai taajamissa jo lähes 86 % suomalaisista) että jalostunut tuotanto- ja palvelutoiminta. Kaupunkiliikenteen resilienssillä on siten eniten vaikutusta kansalaisten jokapäiväiseen elämään.

Kun ratikka pettää, niin bussilla pääsee – tai päinvastoin. Pyöräteiden rakentaminen, huolto ja ylläpito eivät ole vain kansalaisten kunnon ylläpitoa tai harrastusmahdollisuuden tukea, vaan sillä on suurempi merkitys koko liikennejärjestelmän toimivuuden varmistajana. Haja-asutusalueen asukkaiden pääsyä kaupunkiin voidaan tukea rakentamalla pysäköintialueita hyvien joukkoliikenneyhteyksien solmukohtiin ydinalueiden reunamille. Monimuotoisuus liikennejärjestelmässä on pääsääntöisesti vahvuus, minkä vuoksi sen tulisi olla aina kaupunkisuunnittelijoiden muistilistalla. Toisaalta sillä on kääntöpuolensakin, sillä toimiakseen hyvin joukkoliikenteen tulisi palvella asiakkaita heidän tarvitsemanaan ajankohtana. Asiakkaiden kannalta riittävän tiheä joukkoliikenneverkosto puolestaan kasvattaa tyhjänä kulkevien bussien tai raitiovaunujen riskiä, ja lisää näin päästöjä. Joustavuuden lisääminen saattaa vaatia esimerkiksi joukkoliikennekaluston uudelleenarviointia. Miten olisivat pienet, ketterät sähköbussit?

Seuraavassa osassa käymme läpi loput kolme OECD-julkaisun suositusta sekä puntaroimme, mitkä ovat Suomen liikennejärjestelmän vahvuudet ja heikkoudet.

Pekka Leviäkangas VTT

Pekka Leviäkangas, johtava tutkija

Riitta Molarius VTT

Riitta Molarius, erikoistutkija

Lue lisää:

ITF (2016), Adapting Transport to Climate Change and Extreme Weather: Implications for Infrastructure Owners and Network Managers, ITF Research Reports, OECD Publishing, Paris. http://dx.doi.org/10.1787/9789282108079-en

Raportti ladattavissa: http://www.oecd-ilibrary.org/transport/adapting-transport-to-climate-change-and-extreme-weather_9789282108079-en;jsessionid=5o0iqml8ohiq9.x-oecd-live-03

EWENT-hanke: http://ewent.vtt.fi/index.htm

Leviäkangas P & Saarikivi P 2012: D6: European Extreme Weather Risk Management – Needs, Opportunitites, Costs and Recommendations. http://ewent.vtt.fi/Deliverables/D6/Ewent_D6_SummaryReport_V07.pdf

VTT Technology 43: Weather hazards and vulnerabilities for the European transport system – a risk panorama. http://www.vtt.fi/inf/pdf/technology/2012/T43.pdf

Are you ready for the shift from B2B to B4B?

B2B is over! The manufacturing industry is shifting to B4B, where suppliers no longer focus on selling things to customers but rather on creating outcomes and value for their businesses. In B4B models, customers pay much less up front for a product or service, sometimes nothing at all. Instead, the supplier gets paid when customers use their products and often only according to the benefits they receive.

So where does the value come from and how can businesses reinvent themselves to stay in the game? For suppliers value will come from knowing what outcomes customers really want, creating solutions to meet those needs and making their value-add visible. It’s also about finding win-win outcomes balancing both supplier and customer needs, which we are seeing more of in new partnership-based businesses.

Digitalisation must go deep into the DNA

These B4B models require transparency, which digital technologies enable. Digitalisation is also a big part of the solution where products can behave more like digital platforms that bundle data to enable outcomes to fit customer needs. So once you’ve sold a product it can become a launching pad for new future products and services for your customer.

Digitalisation is critical, but on its own it’s not enough. If it’s used like a sticking plaster, only quick fixes can be achieved whereas B4B models require real and sustainable value add. Real change needs to go deep into the DNA of a business, reflecting the most critical customer needs in a real operating environment.

B4B much more than just nice apps and XaaS offerings

We all know the story of Air BnB and the two guys with one extra room who couldn’t make rent. They launched a web site and disrupted the entire global travel and hotel business. Doing the same in big industry is much more complicated. Most of us understand how the hotel business works. You take a room, have your stay, and pay the money, and then you leave. But how many know how to run an electricity grid? If you really want to change the DNA of a smart grid, something critical for society, you need to know about much more than just digital technology, you need to know all the technical ins and outs of the business, how it’s run, where the valued add or beef of the business is, and all of the many technical restrictions that come with it.

In B4B we’re better together

As no single entity can overcome these complex challenges alone, effective networking is a core success factor in B4B. Just as you a consumer might consult a social media network to share or learn more from crowd knowledge, at industry level, companies big and small are also jumping into sharing partnerships to develop their competitive advantage. Partnerships can be with researchers, ICT providers, sometimes customers, and even with competitors, in the growing spirit of coopetition.

Take an example of Company A: a small business with a big idea. They’re in the healthcare industry where the fail-fast approach is not a viable option. In order to test and prove their idea they need a cutting edge 3D printer but the cost of purchasing one upfront would be a prohibitive especially with no guarantees that the idea will actually fly. In this case, an effective innovation path can be found through sharing partnerships with shared infrastructure and expertise networks.

VTT testing and piloting platform can help

VTT, together with Tampere University of Technology, has developed an open ecosystem platform that will help Company A take their idea and run with it. The platform, called SMACC (Smart Machines and Manufacturing Competence Centre) brings instant access to a 3D printer to test their idea. If glitches arise, help for small or large questions will come from a joint knowledge network. Finally, when the time is right, Company A will have its own collaboration team to help pilot the new solution cost effectively and at speed.

Using the power of partnership platforms, VTT is well-positioned to play a central role in helping business make the shift toward outcome-driven B4B products and services. We want to work like genetic engineers, drawing on our extensive knowledge networks and research, and applying rapid solutions not just to quick fix your business but to transform it over time.

The shift to B4B will be one of the big topics of the Manufacturing Performance Days in Tampere at the end of May. I look forward to taking it up with you there!

Kalle Kantola VTT

Kalle Kantola
Vice President, Research
Smart industry and energy systems
Twitter:
@kallekantola

Does Food Economy 4.0 represent new or old thinking?

During my work career, I have been dealing with hundreds of companies as well as their leaders and owners. At times, it has felt a little silly to be lecturing this target group about the basics of doing business, because, actually, they are the ones who should be teaching me. That group of corporate representatives has naturally included plenty of such business genius that it has left me stunned with admiration and taught me a lot as well. On the other hand, there have also been people who are running their everyday operations with admirable perseverance, but who seem to lack a clear picture of what they should be doing and for whom in terms of business.

In other words, what are the customers’ needs and how they should be served? Companies often refer quite easily to how important customers are to them, but if their potential customers themselves do not feel that the company considers them or their needs important, business will not grow. In the changing world, the foresight regarding customer needs is increasingly important.

Let’s look ahead!

In the early years of the 2010s, I was involved in the running of the Future Shop Club. There we got together with the actors in the trade value chain and discussed the transition within the sector and envisioned what it was leading to in the speciality goods trade. There were actors involved who set out to renew their business activities right there and then. However, there was an even larger number of those who said: “We already have an online shop and, therefore, everything is OK.” Perhaps needless to say, but there are very few of the latter group left still running commercial operations today. The changes brought on by digitalisation and changed consumer behaviour in speciality goods trade have been immense.

Basically, the transition in the trade sector has had very little to do with online shopping. Only very few people understood or believed this at the beginning of the 2010s, even though it did not require much prophesying skills to see the change. All that was needed was to raise your gaze from your own feet and look ahead.

Now the food economy is going through a similar change as the speciality goods sector in the early 2010s

The customers used to the new-age speciality goods trade now expect a similar change from the grocery sector as well. On the other hand, the new smart production and smart logistics practices that are revolutionising the manufacturing industry offer the food industry and its value chain models on how to organise themselves in a new manner that would serve both the consumers and the environment.

VTT’s new Food Economy 4.0 vision of an era of smart consumer-centric food production provides three change paths, which we are actually already taking:

  1. from mass production to personalised solutions
  2. from centralised to agile manufacturing and distribution
  3. from horizontal to vertical food production.

Does Food Economy 4.0 represent a totally new kind of thinking? The answer is no. The consumer-centrism of Food Economy 4.0 means genuine and active dialogue between consumers and trade or consumers and producers.

I myself have grown up on a farm. Therefore, as a child I saw close up how my parents were engaged in genuine social dialogue with the customers of the farm, taking their individual needs into account in production. Then society changed, and cost-efficiency pressures got the upper hand. The interaction between consumer-customers and the operators in the food chain waned away.

In Food Economy 4.0, the interaction is revived again – this time, assisted by digitalisation

The commercial way of thinking about the importance of genuinely catering for the customers and their individual needs dates back centuries. Digitalisation just offers a new way of implementing this better and in a larger scale than has ever been possible before.

The change towards smart and consumer-centric food production is already under way. To see that, all you need to do is raise your gaze from your own feet and look ahead.

The new era means significant changes in the food chain and its business models (see Food Economy 4.0 vision for examples). The basics of business operations – what?, for whom? and why? – will remain unchanged even though the methods – how? – changes. Maybe it is still necessary to remind people about the basics after all.

Jaakko Paasi VTT

Jaakko Paasi
Principal Scientist
Business, Innovations and Foresight

From off-peak electricity to comprehensive energy saving

Over the last few weeks, it has been well nigh impossible to avoid seeing headlines about demand response, intelligent home automation and remotely readable electricity meters. Finland has been said to be a global frontrunner in the development of intelligent energy systems, which opens possibilities in the large and global market. However, consumers may remain uncertain as to whether they can benefit from this development in ways other than through the old familiar off-peak electricity.

In a recent news article, the Finnish Broadcasting Company wrote about how new intelligent meters will change everyday domestic life, while the proliferation of intelligent technology was reported in March to create entirely new kinds of electricity products on the electricity market. When reading the latter article, in particular, the famous bubble burst – it was merely about the old and familiar hourly rates for electricity. For many consumers, hourly rates have remained an alternative akin to the lottery – electricity may be cheap, or it may make a deep dent in your wallet.

Hourly rates are merely the tip of the iceberg of the changes emerging below the surface of the energy market. With regard to intelligent technology, one of the most concrete examples is Fingrid’s Datahub to be deployed in 2019. This increases the efficiency of the information exchange in the electricity retail market, offering an interface for business development. Elsewhere, according to its views as presented in the Commission’s winter package, the EU wants to shorten the imbalance settlement period to 15 minutes from 60 minutes, thus shaping the operation of the market to become much more dynamic.

Today, intelligent technology and dynamicity are most visibly connected on the electricity market in the form of demand response, the idea of which is pretty simple on paper: based on hourly electricity rates, demand is moved from expensive hours to cheaper hours, which is seen on the consumer’s electricity bill as savings. Fortum is currently running a commercial electricity demand response trial, in which a virtual power plant with a capacity of over 100 kW has been formed from the hot water boilers of 70 electrically heated detached houses and utilised in maintaining the power balance of the network. Examples of demand response can also be found in the heating sector: Fourdeg connects a weather forecast and a cloud service to a thermostat, allowing the apartment’s temperature to be adjusted room-specifically, saving energy and therefore also money.

Fingridin Tuntihinta-mobiilisovellus

Consumers can already use, for example, Fingrid’s Tuntihinta (Hourly rate) mobile application to monitor the hourly spot rate on the electricity market and receive alerts if the hourly rate exceeds the alert limit set by the user. Demand response requires an electricity agreement tied to the market rate. However, the savings remain marginal when consumption is controlled manually.

In the future, electricity is not merely a commodity going from the wall socket to an appliance; instead, electricity and heat will be fundamentally linked with each other, with homes featuring small-scale production of both, and storage solutions as well. Furthermore, these different components of the system must be governed in a controlled manner so that it is comfortable to spend time at home. Understanding all this requires combining many different areas of competence and points of view into a single whole, which may appear to the consumers as an insurmountable obstacle for participating in the active control of the energy consumption at home.

Every consumer is different and wishes to participate in controlling the energy consumption of their home in different ways. In order to make this participation easier, we have launched a project called DyRES (Dynamic platform for demand RESponse) in which we will create a dynamic calculation platform for the optimisation of flexible use of electricity and heat. Our approach is slightly topsy-turvy: by making the models more complex, we can simplify things and bring them closer to practice. This complexity comprises the operation and characteristics of each individual appliance utilised in the demand response, building models, control circuits and the system’s control logic in accordance with the consumer’s behaviour, and at lot more besides. However, we will conceal all this complexity behind a clear user interface that suits the consumer’s needs. The concept will be demonstrated first by simulating residential areas, but the developed platform will suit the implementation of demand response for complex industrial processes as well, thanks to the Apros® modelling tool we use.

DyRES

DyRES combines analytic calculations, dynamic simulation and a consumer interface into one, single whole. This enables the transparent utilisation of algorithms and optimisation in practical applications intended for consumers. We will discuss the benefits offered to different user groups by the calculation platform in more detail in the next part of the blog.

The purpose of the platform we have developed is ultimately to guide a consumer’s use of electricity and heat in such a way that the energy consumption and related costs are reduced without compromising living comfort. This is enabled by the home automation and intelligent electricity meters so often mentioned in the news. A visual interface between the automation and the consumer enables the consumers to participate according to their own level of activity – or they can just be passive participants. However, the burning question is who is motivated by what to participate in the demand response: money, environmental impacts or something else entirely?

VTT is involved in the Energy Efficiency 2.0 in Building seminar on 22 May 2017 at Heureka in Vantaa, Finland. So please, come and discuss with us what demand response services should take into consideration from the perspectives of the consumer, developer and service provider.

Tomi Thomasson VTT

Tomi Thomasson, Research Scientist 

Elina Hakkarainen VTT

              Elina Hakkarainen, Research Scientist
Twitter: @e_Hakkarainen

Mikko Jegoroff VTT

Mikko Jegoroff, Research Scientist

Building the future: Bold implementation generates infra and construction sector innovations

Much is being written, in various contexts, about the experimental culture. This is a favorite term used by the current government. The idea is to achieve rapid growth, innovative solutions and improved services, while promoting self-reliance and entrepreneurship, and strengthening regional and local decision-making and cooperation based on practices developed at grass-roots level.

In the development of the construction sector, design and building and traffic infrastructure development, piloting has become a common term when innovating in project activities. New technologies should be tested in genuine project environments, so that their potential and true benefits can be revealed in a joint construction project between several organisations. An extensive piloting project can include several trials and even experiments of alternative ideas, in which the aim is to develop a good and adaptable operational plan for the project. A topical theme in piloting is the use of information management and inframodels in infrastructure construction.

Information is part of the final result

A project based on building information model involves the same actors as in other construction projects. Service contractors (designers, consultants, contractors, fitters) perform project tasks and generate, share and release the related information for each other, project managers and the client – structured as agreed. The client is provided with an actual building or route and the information required for its maintenance and use across its lifecycle.

Building information technology is applied as part of process renewal during a project. This enables the testing of interoperability between tools, in terms of communicating information, as well as process integration and collaboration between actors. Each actor’s mindset is oriented towards generating efficiency and information for project decision-makers and other parties. Such information should be defined, suitably precise and localised for the geometrical plan (building information model). It should also be provided at the right time and in a format compatible with the tools of the various actors within the collaborative process.

Pilot projects involve the development of information modelling requirements, in which tried and tested practices are defined as minimum requirements and instructions. Developmental implementation is an efficient way of operating. In pilot projects, the socio-technological change can be realised in a way that it strengthens and modernizes the sector and service providers’ business operations. The built environment, and its service-capabilities, are experienced positively by end-users.

The client is the key player in projects using building information models

The client acquires the overall assignment and key experts, and defines the technology to be used. In this regard, the client is the key actor in projects using infraBIM models. The general infraBIM model requirements, YIV2015, define the relationship between the client and the service contractor within a set of instructions: A building information modelling (BIM) project works as follows: “The client must be able to assess how BIM can generate the greatest possible added value for the project and how modelling will promote the achievement of the project’s overall objectives. On the other hand, the project’s service contractors must be able to adapt their business processes to the client’s objectives”

Example: BIM for the City Rail Loop project

Collaboration between the client and service contractor is particularly important in pilot projects, where the goal is to develop the best operating models for the use of technology. The design of a railway line and buildings for the City Rail Loop project is a recent example of an extensive pilot environment for BIM development.

The clients in the City Rail Loop project – the Finnish Transport Agency and the City of Helsinki – did not lack the courage needed to require that all planners and designers involved must engage in BIM from the very beginning. The clients had to enable a smooth collaboration process between several dozen representatives of the design sector. Even defining the correct initial data was acknowledged as challenging, as was the information management required to present an overall picture of progress with the project; this was because two sectors, using different types of BIM software, were working on the same project. This succeeded via an innovation process, which received sufficient support through means such as a BIM management group able to decide quickly on integration challenges as they emerged. Interoperability, enabling information exchange, was achieved through definitions created by a BIM coordinator development group – the scope and usefulness of modelling turned out to be better than anyone had originally dared hope.

The final result was the first international project in which representatives of the infra and construction sectors engaged in modelling using their own planning tools, but using information exchange standards and mutually agreed guidelines. VTT has had a report drawn up on the BIM guidelines issued by the client for the City Rail Loop project, which explains the practices developed and the lessons learned.

Open-minded and bold people able and willing to engage in development are needed in research, development and implementation. The ability of clients and their representatives (design leadership and project managers) to adopt new know-how has a direct bearing on how well extensive infra-modelling based on a PRE-research programme ultimately succeeds.

The BIM development pilot for the City Rail Loop project shows that innovation occurs at project level if enthusiasts for new technology are given the space to develop effective practices. To create value, the technology must be adapted to the processes in question and generate practical methods.

Every major construction and infrastructure development project is a possible platform for a pilot. Collaborative process models can be changed in large-scale projects, if innovations form part of the project goals. Piloting is monitored and used to evaluate the stage of development of new practices. A good pilot project aims to achieve longer-term goals than a single experiment: at best, it forms part of a sector’s development roadmap.

Tarja Mäkeläinen VTT

Tarja Mäkeläinen
Senior Scientist

Tulevaisuuden rakentaminen: Rohkea jalkauttaminen synnyttää infra- ja rakennusalalle innovaatioita

Kokeilukulttuurista kirjoitetaan paljon eri yhteyksissä. Se on nykyhallituksen esiin nostama termi. Sillä pyritään nopeaan kasvuun, tavoitellaan innovatiivisia ratkaisuja, parannetaan palveluita, edistetään omatoimisuutta ja yrittäjyyttä sekä vahvistetaan alueellista ja paikallista päätöksentekoa ja yhteistyötä kansalaislähtöisiä toimintatapoja hyödyntäen.

Rakennusalan ja infrarakentamisen kehittämisessä on totuttu puhumaan pilotoinnista, kun uusia asioita otetaan käyttöön projektitoiminnassa. Uusia teknologioita pitää kokeilla aidoissa projektiympäristössä, jotta niiden potentiaali ja todellinen hyöty saadaan näkyviin monien organisaatioiden yhdessä muodostamassa rakennusprojektissa. Laaja pilotointihanke voi sisältää monia kokeiluja, joilla pyritään kehittämään hankkeelle hyvä ja sovellettava toimintamalli. Yhtenä ajankohtaisena pilotoinnin aiheena on infrarakentamisen tiedonhallinta ja inframallien käyttö.

Tieto on osa lopputulosta

Toimijat tietomallihankkeessa ovat samat kuin muissakin rakennushankkeissa. Palveluntarjoajat (suunnittelijat, konsultit, urakoitsijat, asentajat) toteuttavat projektitehtäviä ja tuottavat, jakavat ja julkaisevat myös niihin liittyvää tietoa toisilleen, projektinjohdolle sekä tilaajalle – sovitulla tavalla strukturoituna. Tilaajalle luovutetaan konkreettinen rakennus tai rakennettu väylä sekä siihen liittyvä tieto ylläpitoa ja elinkaarenaikaisia käyttötarkoituksia varten.

Tietomalliteknologiaa sovelletaan hankkeen aikana uudistettavassa prosessissa. Näin päästään testaamaan tiedonsiirron yhteentoimivuutta työkalujen välillä, prosessien integroitumista ja toimijoiden välistä yhteistoimintaa. Jokaisen toimijan asenne on orientoitunut tuottamaan tehokkuutta ja tietoa hankkeen päätöksentekoon ja muille osapuolille. Tiedon tulee olla määriteltyä tietoa, oikealla tarkkuusasteella ja paikallistettuna geometriseen suunnitelmaan (tietomalliin) sekä toimitettuna käyttökelpoisessa muodossa eri toimijoiden tietotyökaluille yhteistyöprosessissa oikeaan aikaan.

Pilottihankkeet kehittävät tietomallivaatimuksia, joissa hyväksi havaitut käytännöt kuvataan minimivaatimuksina ja ohjeina. Kehittävä jalkauttaminen on toimiessaan tehokasta. Pilottihankkeissa voidaan jalkauttaa sosioteknologista muutosta, vahvistaa ja uudistaa toimialaa, palvelutoimijoiden liiketoimintaa sekä loppukäyttäjien kokemaa rakennettua ympäristöä ja sen palvelukykyä.

Tilaaja on tärkein toimija tietomalleja hyödyntävässä hankkeessa

Tilaaja hankkii projektin tehtäväkokonaisuuden sekä keskeiset asiantuntijat, määrittelee hankkeessa käyttävän teknologian ja on näin ollen tärkein toimija inframalleja hyödyntävässä hankkeessa. Yleiset inframallivaatimukset YIV2015 määrittelee tilaajan ja palvelutarjoajien suhdetta ohjeessa “Tietomallipohjainen hanke” seuraavasti: ”Tilaajan tulee osata arvioida, miten tietomallintamisella saadaan tuotettua hankkeelle mahdollisimman suuri lisäarvo ja miten mallinnus edistää hankkeen kokonaistavoitteiden saavuttamista. Toisaalta hankkeen palveluntarjoajien on osattava sovittaa toimintaprosessinsa tilaajien tavoitteisiin.”

Esimerkkinä Pisararata-hankkeen tietomallintaminen

Erityisen tärkeä tilaajan ja palvelutuottajien yhteistyö on pilottihankkeissa, joissa pyritään kehittämään parhaita toimintamalleja teknologian hyödyntämistä varten. Pisararata-hankkeen ratasuunnittelu ja rakennussuunnittelu on yksi viimeaikaisista laajoista tietomallintamisen kehittämisen pilottiympäristöistä.

Pisararata-hankkeessa tilaajilta, Liikennevirastolta ja Helsingin kaupungilta, ei puuttunut rohkeutta asettaa vaatimukseksi, että kaikki hankkeeseen valittavat suunnittelijat mallintavat alusta asti. Tilaajien tuli mahdollistaa yhteistyöprosessin sujuminen useiden kymmenien eri suunnittelualojen edustajien välillä. Jo oikeiden lähtötietojen määrittelyn tiedettiin olevan haasteellista ja kokonaiskuvan esittäminen hankkeen etenemisestä oli myös tiedonhallinnallisesti haasteellinen, koska kaksi toimialaa työskenteli samassa hankkeessa erityyppisillä tietomalliohjelmistoilla. Tämä onnistui innovointiprosessissa, jota tuettiin riittävästi mm. tilaajien tietomalliryhmällä, joka pystyy välittömästi päättämään eteen tulevista integroinnin haasteista. Yhteistoimivuus tiedonsiirrossa saavutettiin BIM-koordinaattoreiden kehitysryhmän määrittelyillä, ja mallintamisen laajuus ja hyödyntäminen oli parempi kuin alun perin uskallettiin odottaa.

Lopputuloksena saavutettiin kansainvälisesti ensimmäinen hanke, jossa infra- ja talopuolen toimijat mallinsivat kaikki omilla suunnittelutyökaluillaan käyttäen avoimia tiedonsiirron standardeja ja yhdessä sovittuja ohjeita. Pisararata-hankkeen tietomallintamisen tilaajaohjauksesta on VTT:n toimesta laadittu raportti, jossa avataan kehittyjä toimintamalleja ja hankkeen oppeja.

Tutkiminen, kehittäminen ja jalkauttaminen tarvitsevat avarakatseisia, rohkeita, kehittämiskyisiä ja -haluisia henkilöitä. Miten tilaajat ja tilaajien edustajat (suunnittelunohjaus ja projektipäälliköt) osaavat ottaa uutta osaamista haltuun, on suoraan verrannollinen siihen, kuinka hyvin PRE-tutkimusohjelmasta käynnistynyt inframallintamisen laajapohjainen jalkauttaminen lopulta onnistuu.

Pisararadan tietomallintamisen kehityspilotti osoittaa, että innovointia syntyy hanketasolla, kunhan uuden teknologian käyttöönotosta innostuneille ihmisille annetaan tilaa kehittää toimivia käytäntöjä. Teknologia tulee sovittaa prosesseihin ja luoda käytännön menetelmiä, jotta se luo hyötyjä.

Jokainen iso rakennus- ja infran kehittämishanke on mahdollinen pilottialusta. Laajoissa hankkeissa on mahdollista tehdä toimintamallien muutosta, jos innovaatiot sisällytetään hankkeen tavoitteisiin. Pilotointia seurataan ja sen avulla arvioidaan uuden toimintamallin kypsyysastetta. Hyvä pilotointihanke tähtää pidemmän tähtäimen tavoitteeseen kuin yksittäinen kokeilu: se on parhaimmillaan osa toimialan kehityksen tiekarttaa.

Tarja Mäkeläinen VTT

Tarja Mäkeläinen
Erikoistutkija