Local energy systems have a host of advantages

By the end of 2020, all new buildings must be almost zero-energy. This means buildings that consume very little energy. In addition, the energy required should be renewable as far as possible. Where this renewable energy would best and most sensibly produced is up for grabs. If the energy is produced locally to fulfil, say, the needs of entire neighbourhoods, huge benefits can be reaped without placing unreasonable demands on single buildings.

A range of zero energy solutions have been proposed and analysed by the international scientific literature, but few have been implemented. In my opinion challenges in implementation, such as high costs or complex system solutions, may be the reason for this. The more systems there are, the more demanding their use and maintenance is. Such barriers are lowered if zero-energy areas replace zero-energy buildings.

Local renewable energy sources can be chosen in order to improve an area’s energy self-sufficiency and emission reduction. In densely built areas, it makes sense to design buildings that serve as an effective part of the local energy system. For example, solar energy systems can be placed optimally with respect to the entire area, to avoid shade due to differences in altitude, or to trees or other buildings. In Germany, solar thermal collectors intended for residential heating are installed e.g. as roadside sound barriers and roofs for parking facilities.

Sweden, Denmark, Germany and Canada implemented local, solar thermal systems combined with district heating and seasonal storage years ago. Pilots for the seasonal thermal energy storage (STES) of solar energy on a local basis are few and far between in Finland, despite demonstrations by international studies that the utilisation level of solar energy can exceed 50% of the annual local heat requirement in similar climate zones. STES can also be enhanced through the more effective use of a variety of waste heat solutions, such as excess heat from data centres.

Greater use could be made of local renewable energy, waste heat and heat storage if district heating networks were opened out to a range of heat producers. This has been done in Stockholm. New players and competition thereby enter the heat production market. At the same time, energy flows can be recycled and local energy efficiency improves.

A recently completed study by VTT presents options for heat and power generation based on local energy systems. Energy needs and ‑production on Vartiosaari in Helsinki were explored as a case area. The project studied the impact of introducing solar thermal energy on local self-sufficiency and emissions from heating energy, if excess solar heat in the summer is stored using BTES (borehole thermal energy storage) or tank-based storage for use in the winter. Around 60% self-sufficiency in heat production would have been achieved in the cases studied. In addition, carbon dioxide emissions could be reduced by around 50%, and sulphur dioxide and particulate emissions by up to 70%.

Satu Paiho

Senior Scientist

Read the publication “Paikallista energiaa asuinalueella – Esimerkkinä Helsingin Vartiosaari” online.

Climate impacts of transport

The world’s attention is now turned towards France and Paris. The media have been preoccupied by the terrorist atrocities. With luck, good news too will soon come out of Paris. I am referring to the UN climate change conference to be held at the end of November and early December.  Our planet needs common, binding targets for curbing greenhouse gas emissions.

Transport emissions of greenhouse gases can be reduced by increasing the efficiency of the entire energy system, improving the energy efficiency of vehicles and switching to renewable energy. Until now, boosting the energy efficiency of vehicles, particularly cars, has been the key factor in curbing transport emissions.

For this presentation, I browsed for various statistics on traffic. IEA figures show that traffic accounts for 28% of the end consumption of energy on a global scale. i.e. the transport sector is a major energy user and producer of greenhouse gas emissions. Of course, due to Finland’s energy-intensive industrial sector, traffic accounts for a lower proportion of emissions here. According to the IEA, oil accounts for 93% of energy used in transport, with alternative energy sources (including biofuels, natural gas and electricity) still accounting for only 7%. In Europe, biofuels accounted for only 4.9% of road transport fuels in 2014.

Electric cars are being much discussed. According to the IEA, there were 665,000 electric vehicles in the world by the end of 2014. This is a high figure in itself, but accounts for only 0.08% of the world car fleet in absolute terms. The registration statistics of the European Automobile Manufacturers’ Association, the ACEA, make for grim reading. Of new vehicle registrations in Europe, alternative vehicles accounted for only 4% in January–September 2015 and electric vehicles for only 0.8%. In Europe, only Norway (12.5%) and the Netherlands (3.9%) top 3% for the proportion of electric cars bought.

So where are the bright spots? In fact, they are closer to home than people think. Namely, in Finland. In 2014, biofuels in Finland accounted for 12.3% of all energy produced and the calculated share – taking account of so-called double counting – was as high as 23.5%. Under its distribution obligation, Finland aimed for a 20% share for biofuels by 2020 (calculated share), which means that this objective was achieved ahead of time and with flying colours. Finland’s number of electric cars is nothing to boast about.  But bright spots can be seen here as well. Finland is home to a new electric bus manufacturer, Linkker, a VTT spin-off. Helsinki Region Transport (HSL) has signalled its faith in progress by ordering the first 12 vehicles, the first of which is expected to hit the roads any day. HSL and VTT are engaged in close cooperation in other respects. Aims include all conventional buses ordered by HSL being run 100% on biofuels by 2020. In addition, HSL has highly ambitious plans for electric buses.

And this gives us our link to climate issues. Where public transport is available, passengers should be incentivised to leave their cars at home. This would improve energy efficiency and reduce emissions. It would also release urban space – currently used for parking – for other, more rational uses. And how can we get the share of public transport to rise? By providing easy-to-use passenger services and journey chains, and increasing the attractiveness of buses by promoting greener vehicles. All in line with HSL’s strategy and based on excellent cooperation between HSL and VTT!

Nils-Olof Nylund

Research Professor and Programme Manager of the TransSmart spearhead programme

VTT supporting energy planning in Namibia

The moment you land on Hosea Kutako International Airport next to the capital of Namibia, Windhoek, you quickly realise you’re in a special place. Surrounded by a savannah landscape, rolling hills and an occasional wild animal you can’t help but feel a sense of adventure. This feeling grows stronger when you get an opportunity to explore the vast country more; Places such as Etosha National Park, the sand dunes in the Namib Naukluft National Park or simply the rough but beautiful wilderness everywhere in the country will impress even a more experienced traveller. But behind these amazing landscapes, serious challenges arise and many of them relate to climate change.


According to the Intergovernmental Panel on Climate Change (IPCC) southern Africa is one of the most vulnerable regions to the impacts of climate change. Climate change vulnerability is especially high concerning extreme events such as increased drought causing water stress, land degradation, desertification and loss of biodiversity. As a major part of the population is reliant on climate-sensitive sectors such as agriculture, livestock management and fishing, these events can endanger the food security and the overall development of the region.

At the same time, among other development challenges, many of the countries in the region are facing big decisions concerning the development of their energy sector.  For example, the Namibian energy sector has seen very little investment on electricity production capacity, making the country very reliant on energy imports. As other countries in the region are also experiencing difficulties in securing their electricity supply due to aging energy infrastructure and growing consumption, major investments would be needed.

Namibia is situated on shores of the Atlantic Ocean north from neighbouring South Africa. It is a vast, dry country with a population of only 2.3 million.

Namibia is truly at a crossroad concerning the development of its energy sector, and the decisions made now will have a major impact for several decades. Fortunately, Namibia possesses a significant potential for utilising renewable energy sources, especially solar.

Sunset in Swakopmund, Namibia

Informed decisions about future sustainable energy system

During recent years, VTT has been involved in energy policy development in Namibia by supporting the work of Ministry of Mines and Energy of Namibia. Currently, VTT works on a project related to energy efficiency and renewable energy options for the Namibian fishing industry.

Project manager Miika Rämä with Mr. Peya Hitula, the CEO of fishing company Tunacor.

Interest on energy issues has been high, not least because of rising price of electricity: a 65 % increase on average during past 5 years for commercial and large power user consumers. In general, concerns on the electricity supply are currently a hot topic of public discussion.

The need for the capacity building on energy issues in the region is high. For example, the changes in electricity system operation and management due to increasing solar based electricity production would benefit from smart grid and electricity storage solutions. Currently, the country is moving towards a highly distributed electricity system with a significant number of relatively small scale power plants in development. Namibia’s fist photovoltaic power plant of 4.5 MW in capacity was inaugurated in 13th May 2015.

The Namibians also face the problem of evaluating which technology providers actually can guarantee reliable systems, and do not just try to sell their product for buyers with limited knowledge and experience on the technologies and their profitability. Thus capacity building by a neutral party such as VTT has been highly appreciated by the stakeholders met in the projects.

There is a lot of room for very important work in the region, and the expertise of VTT’s energy systems specialists can serve the Namibians for making better decisions for future sustainable energy system. This work can also contribute in tackling the challenge of climate change adaptation. Not perhaps by the scale of activities, but by setting an example that with given resources and careful planning a 100 % renewable electricity system is a realistic target.

Current project team (from the left): Kati Koponen and Miika Rämä from VTT, Nils Hauffe from NWV Market Discovery, Inc.

Kati Koponen, Research Scientist

Miika Rämä, Research Scientist


See also:

Research report: Development of Namibian energy

The Energy and Environment Partnership (EEP)

International Renewable Energy Symposium (IRES) – NAMIBIA

Embassy of Finland in Windhoek


Alueellisissa energiajärjestelmissä on paljon etuja

Vuoteen 2020 mennessä kaikkien uusien rakennusten tulee olla lähes nollaenergiarakennuksia. Tämä tarkoittaa, että rakennukset kuluttavat hyvin vähän energiaa. Lisäksi tarvittava energia tulisi mahdollisimman pitkälle tuottaa uusiutuvalla energialla. On tulkinnanvaraista, missä tämä uusiutuva energia pitäisi tuottaa ja missä sitä olisi järkevä tuottaa. Jos tämä energia tuotetaan aluetasolla esimerkiksi kokonaisten asuinalueiden tarpeisiin, voidaan saavuttaa monia etuja eikä yksittäisille rakennuksille aseteta kohtuuttomia vaatimuksia.

Kansainvälisessä tieteellisessä kirjallisuudessa on ehdotettu ja analysoitu lukuisia erilaisia nollaenergiaratkaisuja, mutta vain joitakin on toteutettu. Mielestäni tämä saattaa viitata haasteisiin toteutuksessa, kuten korkeisiin kustannuksiin tai monimutkaisiin järjestelmäratkaisuihin. Mitä enemmän järjestelmiä on, sitä vaativampaa on niiden käyttö ja ylläpito. Tällaiset esteet vähenevät, jos nollaenergiarakennusten sijasta toteutetaan nollaenergia-alueita.

Alueen energiaomavaraisuuden parantamista ja aiheutuvien päästöjen pienentämistä voidaan tukea valitsemalla paikallisia uusiutuvia energianlähteitä. Tiiviillä alueilla on mielekästä suunnitella rakennukset toimimaan tehokkaana osana alueellista energiajärjestelmää. Tällöin esimerkiksi aurinkoenergiajärjestelmät voidaan sijoittaa koko alueen kannalta optimaalisiin paikkoihin välttäen korkeuserojen, puiden tai muiden rakennusten aiheuttamat varjostukset. Saksassa asuinalueen lämmitykseen tarkoitettuja aurinkolämpökeräimiä on sijoitettu esimerkiksi teiden varsille äänivalleihin ja parkkipaikkojen katteeksi.

Ruotsissa, Tanskassa, Saksassa ja Kanadassa on jo vuosia sitten toteutettu alueellisia aurinkolämpöjärjestelmiä yhdistettynä kaukolämmitykseen ja kausivarastointiin. Suomesta puuttuvat lämpöenergian alueellisen kausivarastoinnin pilotit, vaikka kansainvälisten tutkimusten mukaan vastaavilla ilmastovyöhykkeillä aurinkoenergian hyödyntämisaste voi kausivarastoinnilla nousta jopa yli 50 %:iin vuosittaisesta alueellisesta lämmöntarpeesta. Kausivarastoinnilla voidaan myös tehostaa erilaisten jätelämpöjen, esimerkiksi datakeskusten ylilämmön, hyödyntämistä nykyistä paremmin.

Alueellisen uusiutuvan energian, jätelämpöjen ja lämmönvarastoinnin hyödyntäminen tehostuu, jos kaukolämpöverkot avataan eri lämmöntuottajille. Näin on tehty Tukholmassa. Tällä tavalla lämmöntuottajiksi saadaan uusia toimijoita ja kilpailua. Samalla energiavirtoja voidaan kierrättää ja alueellista energiatehokkuutta parantaa.

Hiljattain päättyneessä VTT:n tutkimuksessa esitetään alueellisten energiajärjestelmien energiantuotantovaihtoehtoja. Case-alueena tarkasteltiin Helsingin Vartiosaaren energiantarpeita ja ‑tuotantoa. Projektissa selvitettiin aurinkolämmön lisäämisen vaikutuksia alueen lämpöenergian omavaraisuusasteeseen ja päästöihin, jos kesällä tuotettu ylimääräinen aurinkolämpö varastoidaan porareikä- tai säiliövarastoon käytettäväksi talvella. Tarkastelluilla tapauksilla alueen lämmön tuotannossa olisi saavutettavissa noin 60 %:n omavaraisuusaste. Samalla hiilidioksidipäästöjä voidaan vähentää noin 50 % ja rikkidioksidi- ja pienhiukkaspäästöjä jopa 70 %.

Satu Paiho


Julkaisu ”Paikallista energiaa asuinalueella – Esimerkkinä Helsingin Vartiosaari”  

Liikenteen ilmastovaikutukset

Nils-Olof Nylund Galleria

Maailman huomio on nyt kääntynyt Ranskaan ja Pariisiin. Terroristien hirmuteot ovat täyttäneet viestimet viime päivinä. Mutta toivottavasti Pariisista tulee piakkoin myös hyviä uutisia. Viittaan tällä marras-joulukuun vaihteessa pidettävään YK:n ilmastokonferenssiin.  Maapallomme tarvitsisi yhteisiä sitovia tavoitteita kasvihuonekaasupäästöjen rajoittamiseksi.

Liikenteen kasvihuonekaasupäästöjä voidaan alentaa lisäämällä koko energiajärjestelmän tehokkuutta, parantamalla ajoneuvojen energiatehokkuutta ja ottamalla käyttöön uusiutuvaa energiaa. Suurin vaikuttaja liikenteen päästöjen hillinnässä tähän asti on autojen, varsinkin henkilöautojen, energiatehokkuuden parantuminen.

Selasin taannoin erilaisia liikenteeseen liittyviä tilastoja esitelmää varten. IEA:n lukujen mukaan maailman tasolla liikenteen osuus energian loppukäytöstä on 28 %, eli liikennesektori on merkittävä energian käyttäjä ja kasvihuonekaasupäästöjen tuottaja. Suomessa toki liikenteen suhteellinen osuus on keskiarvoa pienempi, johtuen energiaintensiivisestä teollisuudesta. IEA:n mukaan öljyn osuus liikenteen energiasta on 93 %, eli korvaavien energiamuotojen (mm. biopolttoaineet, maakaasu, sähkö) osuus on edelleenkin vain 7 %. Euroopassa biopolttoaineiden osuus tieliikenteen polttoaineissa vuonna 2014 oli 4,9 %.

Sähköautoista puhutaan varsin paljon. Vuoden 2014 lopulla sähköautoja oli maailmassa IEA:n mukaan 665.000 kappaletta. Sinänsä melko iso luku, mutta luku on absoluuttisesti vain 0,08 % koko maailman autokannasta. Euroopan autonvalmistajien yhteenliittymän ACEA:n rekisteröintitilastot ovat niin ikään varsin karua luettavaa. Euroopan uusrekisteröinneissä vaihtoehtoisten ajoneuvojen osuus ajanjaksolla tammikuu-syyskuu 2015 oli yhteensä 4 %, ja sähköautojen osuus vain 0,8 %. Euroopassa yli 3 %:n sähköauto-osuuksiin päästään ainoastaan Norjassa (12,5 %) ja Hollannissa (3,9 %).

Entäpä sitten ne valopilkut? Ne löytyvät itse asiassa lähempää kuin uskotaankaan. Nimittäin Suomesta. Vuonna 2014 Suomessa biopolttoaineiden todellinen energiaosuus oli 12,3 % ja laskennallinen osuus, ns. tuplalaskenta huomioiden, peräti 23,5 %. Suomen biopolttoaineiden jakeluvelvoitteen vuoden 2020 tavoite on 20 % (laskennallisesti), joten tämä tavoite saavutettiin kirkkaasti etuajassa. Sähköhenkilöautojen lukumäärällä Suomi ei voi rehvastella.  Mutta valoa sähköautojen alueellakin on nähtävissä. Suomeen on syntynyt uusi sähköbussivalmistaja, Linkker, VTT:n spin-off. Helsingin seudun liikenne (HSL) tilasi ennakkoluulottomasti 12 ensimmäistä autoa, joista ensimmäisiä odotetaan ajoon näinä päivinä. HSL ja VTT tekevät muutenkin tiivistä yhteistyötä. Tavoitteena on mm. saada koko HSL:n tilaama perinteisillä autoilla ajettava bussiliikenne 100 %:sesti biopolttoaineille ennen vuotta 2020. Lisäksi HSL:llä on varsin kunnianhimoisia sähköbussisuunnitelmia.

Ja tästä sitten aasinsilta ilmastokysymyksiin. Siellä missä on tarjolla joukkoliikennettä, liikkujia tulisi kannustaa joukkoliikenteeseen, ei oman auton käyttöön. Näin energian käyttö tehostuu ja päästöt pienenevät. Samalla kaupunkitilaa vapautuu parkkipaikoista muuhun järkevämpään käyttöön. Ja miten joukkoliikenteen osuus saadaankaan nousuun? Tarjoamalla helppokäyttöisiä matkustajapalveluita ja matkaketjuja, sekä lisäämällä bussiliikenteen houkuttelevuutta edistämällä entistä puhtaampia ajoneuvoja. HSL:n strategian mukaisesti, hyvällä HSL/VTT yhteistyöllä!

Nils-Olof Nylund

Tutkimusprofessori ja TransSmart -kärkiohjelman johtaja 

It is more sensible to renovate entire residential districts than individual buildings

According to Statistics Finland, there are more than 20,000 blocks of residential flats in Finland built between 1960 and 1979, which have a total of approximately 0.5 million apartments with permanent residents. Within the next 10 years, many housing companies will face different repair needs as the structures and technical systems begin to show signs of deterioration. In connection with such repairs, it is also natural to consider energy-efficiency improvements to the buildings.

Ecological energy efficiency will be faster and cheaper by means of district renovation

With a view to energy efficiency, it would be advisable to repair entire residential districts rather than individual buildings. This would include renovating both the buildings and the adjacent energy, water and waste management infrastructures. This is the only way of ensuring that the building-specific measures aimed at improving energy efficiency would also affect the entire residential district and its energy production. If renovation is limited to an individual building, that particular site may save energy and water, but the measures will not necessarily have any impact on the energy production and water needs within the district.

Residential districts typically have many building characteristic of a specific era, and the renovation solutions needed are therefore quite similar. Even though there is a wide range of different renovation techniques, and new ones are being developed all the time, elevating the prefabrication level of renovation solutions would speed up the process significantly. This would also require the development of renovation processes, practices and services. When moving from one staircase and building to the next, it would speed up the renovation work if the same solutions could be employed extensively in similar buildings and lessons could be learned from earlier sites and their repairs applied to the next. This would also lower the price of renovation construction.

Often, when examining the emissions caused by heating and other energy consumption of buildings, the focus is only on carbon dioxide emissions, even though they constitute only part of the harmful emissions. However, when the impact of renovation on the harmful emissions of energy production is examined at district level, the conclusions drawn may differ from those that would seem most sensible for an individual building. For example, it is usually more advantageous to use renewable energy in district solutions than in building-specific solutions.

The idea of demolishing and reconstructing old buildings rather than renovating them to meet the current requirements emerges in public debates every now and then. In scientific literature, relatively few comparisons have been made between renovation of buildings and demolition and reconstruction. However, examples from Western Europe show that, from the viewpoint of sustainable development, demolition and reconstruction can only be recommended if the buildings are in extremely poor condition.

New operating methods are required – decision-making is a challenge

District renovation requires new operating methods from the actors involved. From society’s point of view, district-level energy renovation has clear benefits, such as certainty of improved energy efficiency and reduced emissions throughout the energy chain. The renovation of entire residential districts could also be more interesting from the viewpoint of companies, because it would lead to bigger building contracts. In housing companies, decision-making is often the challenging factor. District repair projects would require consistent decisions from several housing companies, but, on the other hand, it would mean lower unit costs for renovation.

I presented the idea of comprehensive energy-efficient district renovations in my dissertation, in which I studied how the energy efficiency of Russian suburbs built in the Soviet era could be improved by renovating the buildings to make them more energy efficient and by reducing the losses from energy infrastructure. The topic was examined from the perspectives of energy savings, the energy needs of a residential district, emissions from energy production, investment costs, and business models of district renovation. Even though the cases studies were in Russia, the same methods and solutions could also be applied to Finland. The benefits would be the same, although not as big as in Russia.

Satu Paiho

Senior Scientist

Dissertation: Energy-efficient renovation of residential districts Cases from the Russian market

Kokonaisten asuinalueiden korjaaminen järkevämpää kuin pelkästään yksittäisten rakennusten

Tilastokeskuksen mukaan Suomessa on yli 20 000 vuosina 1960 – 1979 rakennettua asuinkerrostaloa, joissa on noin 0,5 miljoonaa vakituisesti asuttua asuntoa. Seuraavien 10 vuoden aikana monilla taloyhtiöillä on edessä erilaisia, ajankohtaisia korjauksia, kun rakenteet ja tekniset järjestelmät osoittavat merkkejä korjaustarpeista. Korjauksien yhteydessä on luontevaa miettiä myös rakennuksen energiatehokkuuden parantamista.

Aluekorjaamisella ekologista energiatehokkuutta nopeammin ja edullisemmin

Energiatehokkuuden kannalta olisi suositeltavaa korjata mieluummin kokonaisia alueita kuin yksittäisiä rakennuksia. Tällöin korjattaisiin sekä rakennukset että niihin liittyvät energia-, vesi- ja jäteinfrastruktuurit. Vain näin voidaan varmistaa, että rakennuksiin kohdistettavat energiatehokkuutta lisäävät toimet vaikuttavat myös koko asuinalueeseen ja energiantuotantoon. Jos korjataan vain yksittäinen rakennus, saavutettu energian- ja vedensäästö toteutuu siinä yksittäisessä kohteessa, mutta ei välttämättä vähennä alueellista energian- tai vedentuotantotarvetta.

Asuinalueilla on tyypillisesti runsaasti tietylle aikakaudelle ominaisia rakennuksia, joihin soveltuvat samantyyppiset korjausratkaisut. Vaikka erilaisia korjaustekniikoita on olemassa runsaasti ja uusiakin kehitetään koko ajan, korjausratkaisujen esivalmistusasteen lisääminen nopeuttaisi korjauksia selvästi. Silloin myös korjausprosesseja, ‑käytäntöjä ja ‑palveluita pitää kehittää. Työ nopeutuisi siirryttäessä portaasta ja talosta toiseen, jos samantyyppisissä taloissa voidaan laajasti hyödyntää samoja ratkaisuja ja oppia aikaisemmista kohteista ja niiden korjauksista. Samalla myös korjaamisen hinta laskee.

Usein tarkastellaan vain rakennusten lämmityksen ja muun energiankulutuksen aiheuttamia hiilidioksidipäästöjä, vaikka niistä aiheutuu muitakin haitallisia päästöjä. Kun korjaamisen vaikutuksia energiantuotannon haitallisiin päästöihin tarkastellaan aluetasolla, saatetaan päätyä erilaisiin johtopäätöksiin kuin yksittäisen rakennuksen näkökulmasta näyttäisi järkevimmältä. Esimerkiksi uusiutuvan energian hyödyntäminen on alueellisessa ratkaisussa yleensä edullisempaa kuin rakennuskohtaisessa ratkaisussa.

Ajoittain nousee keskusteluun ajatus mieluummin purkaa ja rakentaa uudelleen vanhat rakennukset, kuin korjata ne nykyvaatimusten tasolle. Tieteellisessä kirjallisuudessa on suhteellisen vähän vertailtu rakennusten korjaamista purkamiseen ja uudelleenrakentamiseen. Kuitenkin esimerkit Länsi-Euroopasta osoittavat, että kestävän kehityksen näkökulmasta purkamista ja uudelleenrakentamista voidaan suositella vain, jos rakennukset ovat äärimmäisen huonossa kunnossa.

Edellytyksenä uudet toimintatavat – haasteena päätöksenteko

Aluekorjaaminen edellyttää toimijoilta uudenlaisia toimintatapoja. Yhteiskunnan kannalta alueellisella energiakorjaamisella on selkeitä etuja, kuten varmuus energiatehokkuuden paranemisesta ja päästövähennysten toteutumisesta koko energiaketjussa. Yritysten kannalta asuinalueiden korjaaminen voisi olla nykyistä kiinnostavampaa, koska korjausurakat olisivat suurempia. Asuinosakeyhtiöissä haasteena on usein päätöksenteko. Aluekorjauksissa tarvittaisiin yhteneväisiä päätöksiä useammalta taloyhtiöltä, mutta toisaalta korjausten yksikkökustannukset laskisivat.

Esitin ajatuksen kokonaisvaltaisista energiatehokkaista alueremonteista väitöskirjassani, jossa tarkastelin kuinka Venäjän neuvostoaikoina rakennettujen lähiöiden energiatehokkuutta voitaisiin parantaa korjaamalla rakennukset energiatehokkaammiksi ja pienentämällä energiainfrastruktuurin häviöitä. Aihetta käsiteltiin rakennusten energiansäästön, asuinalueen energiatarpeen ja energiantuotannon päästöjen, investointikustannusten sekä aluekorjaamisen liiketoimintamallien näkökulmista. Vaikka tapaukset olivatkin Venäjältä, samat menetelmät ja ratkaisut ovat sovellettavissa Suomessa. Hyödytkin ovat samat, vaikkakaan ne eivät ole yhtä suuret.

Satu Paiho


Väitöskirja: Energy-efficient renovation of residential districts. Cases from the Russian market